Naval Ocean Research and Development Activity
November 1989

Report 236

Data Base Structure to Support the Production of the
Digital Bathymetric Data Base

(0

F

o

N

2

: DTIC
ELECTE

< 0CT 30 1990

@@B

James E. Braud
John L. Breckenridge
James E. Current
Jerry L. Landrum

Mapping, Charting, and Geodesy Division
Ocean Science Directorate

|
Approved for public release; distribution is unlimited. Naval Ocean Research and Development Activity, Stennis Space Center,
Mississippi 39529-5004.

[

. RV’
VIR DV I |

—

-~

Foreword

This presentation examines the problems encountered in dealing with a
tremendous volume of collected bathymetric data that must be processed,
edited, and stored for later use in the production of the Digital Bathymetric
Data Base and other Navy products. Gridding the data to the minimum
resolution that is supported by the collection platform’s sensors can greatly
reduce the volume of data without a significant impact on data quality. Further
reduction of the data storage requirements can be achieved through the use
of partial grids and a newly developed compression algorithm that combines
run-length encoding and relative encoding techniques. Once the volume of
data is reduced to a manageable size, existing data base models can be modified
to access partial grids as single entities for storage and retrieval.

i, 1 /’/,/ n_'f'c?/

W. B. Moseley J. B. Tupaz, Captain, USN
Technical Director Commanding Officer

Executive Summary

The Naval Ocean Reséarch and Development Activity was tasked and
sponsored by the Naval Oceanographic Office’to develop a computer model
that would support the siorage and retrieval of the 7 billion points of collected
bathymetry that are used to support the Ocean Survey Program. These data
points are stored at a resolution that is beyond the noise level induced by
the collection sensors. Gridding these bathymetric data 1o an acceptable
resolution of 0.1 minute for areas of actual coverage can greatly reduce storage
requirements. Further reductions can be achieved through the use of
the compression algorithms developed as a result of this project. An overall
compression ratio of 500 to 1 was demonstrated using actual data supplied
by the Naval Oceanographic Office.

Once the data base is reduced in size to a manageable level, relational data
base management systems become practical for organizing information related
to the bathymetry in order to provide easy multikeyed access. The Structured
Query Language, a de facto standard for data base retrieval, can be used 10
query the data base to obtain tables of path names for the files that contain
the compressed bathymetry. A suggested format for these files and the
relational data base structure is presented,in this report.

!

Acknowledgments

The Naval Digital MC&G Analysis Program (DMAP).would like to
acknowledge its appreciation for the cooperation and support it has received
from the personnel in the Bathymetry Division, Geophysics Department of
the Naval Oceanographic Office. In particular, the discussions with Donald
Doyle and Richard Sandy provided valuable background material for this
report. Also, special recognition is given to Jonathan Bryant of the Naval
Oceanographic Office for his efforts in supplying the 12 data sets and graphics
(Appendix E) that were used by DMAP in the evaluation.

This study was sponsored by the Naval Oceanographic Office (Program

Element 980101) and was conducted as part of the Naval DMAP’s Product
Optimization efforts.

Accession For

NTIS GRA&I
DTIC TAB ad
Unannounced (]
Justification e

By J
Distribution/

Avallab u,,i_'f!. Codai

Avail and/or

Dist Special

Al
%)

Contents

I. Introduction
II. Objective

I, Data Compression

. Why Data Compression?

. Compression Through Gridding

. Compression Algorithm

. Partial Grids

. Run Encoding

. Bit Packing

. Future Compression Enhancement

OMmoOw)»

IV. Data Basc Structure
A. Bathymetric Data Base Management System
B. Processing
C. Production

V. Conclusions

V1. Bibliography

Appendix A: Source Code for Compression to Simple Partial
Grid File

Appendix B: Source Code for Modified Run-encoded Partial
Grid Compresion

Appendix C: Source Code for Bit-packed Run-encoded Partial
Grid Compression

Appendix D: Source Code for Bit-packed Run-éncoded Partial
Grid Decompression

Appendix E: Data Sets and Graphics

—

N bW NI e e [

~1 ~} h W

23

33

37

Data Base Structure to Support the Production of the Digital

Bathymetric Data Base

I. Introduction

Because of the rapid advances in computer hardware
and software, particularly in the increased capabilities
of moderately priced graphic workstations and
high-density optical storage devices, the Bathymetric
Division of the Naval Oceanographic Office
(NAVOCEANO) possesses the potential for large gains
in productivity and enhanced data quality for the digital
bathymetric data products in use by the Navy. In
recognition of these developments NAVOCEANO has
acquired the Bathymetric Edit Analysis and Matrixing
System (BEAMS), which consists of powerful graphic
workstations networked to a central minicomputer that
provides file server facilities and allows the work-
stations to share tape drives, disk drives, printers,
plotters, etc.

NAVOCEANO is tasked with the collection of
bathymetric data in support of the Ocean Survey
Program (OSP). These data have been collected over
the past 30 years using up to four deep-ocean survey
ships. Data from the ships are processed and
compressed at NAVOCEANQO and are stored in
chronological order for each ship as they are collected.
This data base currently resides in the form of hundreds
of reels of tape. Because of the volume of data
(currently over 7 billion points with X,Y,Z values
representing longitude, latitude, and depth,
respectively), there are no current means of directly
accessing the data by area. With the advent of optical
disk technology that can provide direct access to
billions of bytes of data at a reasonable cost, a
computer data model should be developed that will
support the muitikeyed storage and retrieval of this
bathymetric data. The data model should include
methods of associating other pertinent information
with each X,Y,Z value, such as the name of the
collection platform, the date and time that the data
were collected, the type and quality of the navigation
and sonar used, etc.

II. Objective

This report addresses two main areas of interest to
NAVOCEANO in its movement toward the work-
station environment that is provided by BEAMS. The

first area is data compression. If multikeved access to
the bathymetric data is to be achieved, then much of
these data must reside on some type of directly
accessible media, such as magnetic or optical disk
drives. Because of the enormous size of the bathymetric
data base and the current state of technology for disk
drives, data compression is likely to be a necessity for
many years to come. This report investigates the
incremental development of a compression algorithm
that may be of use to NAVOCEANO.

The second area deals with the development of a data
base structure that will support NAVOCEANO’s
bathymetric data query needs. Also, a data flow is
developed, which shows the various processing stages
necessary to convert the existing or newly collected
bathymetry into the new data base structure for use
in producing the final gridded produc .

III. Data Compression
A. Why Data Compression?

The BEAMS system, as well as the industry in
general, is moving away from large, centralized, main-
frame systems toward a distributed environment
dominated by workstations, personal computers, and
local area networks (LAN). Although advancements
in mass storage technology, such as the availability of
high-density Write Once Read Many (WORM) and
Compact Disk Read Only Memory (CD-ROM) drives,
should ease the on-line bathymetric data storage
problem, the vast quantity of uncompressed data
still presents considerable burden in the areas of
Input/Output (I/0) device speed, LAN and 1/0 band-
width, and incorporation into existing data base
management systems (DBMS).

Advancements in central processing unit (CPU)
speeds have outpaced advancements in 170 bandwidth.
The limiting factor in most data base manipulative
operations is the access speed of the disk drive and the
transfer rate of the data to main merniory. In tlie past,
multiuser systems utilized the time waiting for data
transfer from [/0 devices to memory to process other
user’s CPU requests. With today’s single-user work-
stations, much of this 1/0 transfer time results in CPU
idle time that could be used to decompress data as it

isread in. In some cases this idle time can be minimized
by the use of buffers and disk caching; however, these
methods, combined with a compression of the data,
would further reduce the 1/0 wait time because
it would require far less time for the disk drive to read
and transfer compressed data.

In dealing with data base management techniques,
an assumption is generally made regarding the storage
and retrieval of data. That assumption is that the
majority of accesses to the data base will be for data
queries as opposed to data updates or inserts. Thus,
most DBMSs optimize the data retrieval process at the
expense of the data base modification process.

The same assumption can be made when dealing
with the compression and decompression of gridded
bathymetric data. The compression technique is a two-
pass process and is relatively slow in comparison to
the decompression. This fact, however, does not
present a significant problem, since the compression
process is basically a one-time occurrence as opposed
to the retrieval process, which may occur many times.
The speed of the compression algorithm is made even
less significant when it is considered that the prime
reason for its slowness is because the enormous size
of the uncompressed file results in excessive delays
due to 1/0 wait time. With the reduced size of the
compressed files, these delays are much less apparent
in the decompression process.

B. Compression Through Gridding

The collected bathymetric data are currently proc-
essed by NAVOCEANO by survey operation
{(SURVOP). The data coliected during the approximate
I-month SURVOP are stored on tapes and sent to
NAVOCEANO, where the data are filtered, edited,
and reformatted into a highly compressed bit-packed
form and stored chronologically via tape. Discrete
depth values, along with the lateral distance from the
ship’s position, are stored sequentially with the time
at which the data were collected. The ship’s heading
is also stored, which allows for the computation of
the depth position based on the lateral distance’s
perpendicular orientation to the ship’s heading. The
navigation data are separately processed and stored.
Data retrieval is accomplished by matching the position
time with the depth collection time and decompressing
appropriate depth information.

During collection, estimated depths are established
for discrete points based on the two-way travel time
of a pulse of sound (known as a ping) as it is detected
by multiple acoustic sensors directed at fixed angles
across the beam of the survey platform. These sensors
recognize the first significant return of sound as a
sample of the shallowest depth found in a large
insonified area, or footprint, that results from the
geometric spreading of the sound over the distance
traveled and the resolution angle of the acoustic sensor

(beamwidth). Although the depth position is recorded
as the center of the footprint, the actual depth position
may occur anywhere within this area. All these errors,
combined with positioning error of the ship and
variations in the sound velocity profile of the water
column, contribute to the noise inherent in the
collection system. Spectral analysis studies with historic
bathymetric data have revealed that because of this
noise level, the accuracy of the depth data within a
swath area is insufficient to support a spatial resolution
less than an approximate 200-m grid spacing. NAVO-
CEANQO has therefore determined that the 0. 1-minute
Digital Bathymetric Data Base (DBDR. 1) is sufficient
for storing the highest resolution bathymetry for areas
of swath coverage.

Gridding of the bathymetric data offers tremendous
advantages in reducing the storage requirements of the
bathymetric data without losing data resolution beyond
the threshold of noise that is inherent in the collection
system. As an example, the depth data stored in its
highly compressed bit-packed format, which was used
to produce the 12 data sets provided to NORDA for
evaluation, required about 130 Mbytes of storage. The
resulting 0.1-minute gridded data sets had a combined
storage requirement of only about 3.3 Mbytes. Thus,
simply by gridding the existing data, a compression
ratio of nearly 40 to 1 can be achieved.

C. Compression Algorithm

For this analysis, NAVOCEANO provided NORDA
with nearly 256,000 gridded depths within a geographic
1° x 1° area. These data consist of 12 data sets; each
set is represented by a full 600 x 600 array of ASCI1I
depuu values.

The overwhelming majority of data values in each
data set is zero, with data occurring only for limited
swath areas within the total 1° square. Data values are
to the 0.1-m vertical resolution, which is bevond the
accuracy of current collection systems, but was derived
as a result of averaging depth values during the gridding
procedure. Although higher compression ratios could
be achieved by scaling the vertical resolution to the
accuracy of the collected data, the 0.1-m resolution
is not degraded throughout the development of the
compression algorithm.

The first stage of data compression was simply to
process the file into X, Y, and Z components. The
nonzero data values were written to an output file with
one line per data point using a format of (213,15). The
X and Y components, with values ranging from 0 to
600 increments per degree, represent the matrix
coordinates of the data point. The depth value is
multiplied by 10 and the quantized integer result
is written using an 15 format. Although the combined
size of the files is rcduced slightly for the majority of
the 12 data sets, the initial purpose of this step was
to convert the data to a format acceptable by the

BEAMS Digital Terrain Modeling (DTM) package.
The BEAMS program XYZDRY converts ASCII point
data (one point per line) to the DTM .XYZ file format.

The 12 ASCII files containing grid coordinates
and depth values were downloaded from the VAX
minicomputer to a Zenith-248 in order to simplify
program development. The 255,944 data points in these
files required 3,071,328 byvtes when stored in this
format. At this point, the goal of the project is to
develop nondegrading compression and decompression
algorithms that would significantly reduce the storage
requirements of the bathymetric data base. Because
of the bit manipulative capabilities and transportability,
““C’* was chosen as the program development language.

D. Partial Grids

The first step in the compression process of these
data points is to eliminate the need to store the X and
Y components of the data. This elimination would
result in a completely filled array much like the original
data, with the exception that instead of the full
1° square area of coverage, only the data within
a minimum bounding rectangle would be stored.
An initial pass through the data easily determines max-
imum and minimum: values for both X and Y. These
maximum and minimum values are stored as header
information with the compressed file, such that a
decompression routine is able to read the data into
a much smaller rectangle or partial grid starting at grid
cell (MINX,MINY). The dimensions of the partial
grid are defined as MAXX-MINX + 1 cells wide and
MAXY-MINY + 1 cells high. Also at this stage, 16-bit
binary integer values, which require only 2 bytes for
each bathymetric point, are used in place of the § bytes
required for ASCII representation.

This algorithm requires that the data points be sorted
primarily by the Y dimension and secondarily by the
X dimension. It was unnecessary to sort the 12 data
sets, however, since the NAVOCEANO data provided
were originally in the form of an array and were already
sorted by column and then row.

The source code for this algorithm is presented
in Appendix A. Table 1 shows the compression
performance of the algorithm on the 12 data sets. This
technique yielded about a 2 to | compression ratio
overall. In the case of file number 1, the partial
grid file was actually larger than the original file
because the coverage of the partial grid necessary to
include the data in file 1 included about one-half of
the entire 1° square (Appendix E).

Although the software developed at this stage was
intended to be only an interim step toward developing
higher performance compression algorithms, such
techniques as the storage of partial grids and the use
of binary data representation are carried over into the
next phase of algorithm development.

Table 1. Compression of ASCH XYZ files to binary
partial grids.

ASCII XYZ Partial Grid
File File Size File Size Reduction

Number [Bytes] [Bytes] Factor
1 299,726 320,413 0.94

2 252,211 243,419 1.04

3 295,033 73,753 4.00

4 272,582 50,065 5.44

5 268,383 52,007 5.16

6 268,890 76,741 3.50
-7 349,295 156,989 2.22
8 376,296 138,793 271

9 300,285 182,119 1.65

10 284,750 228,013 1.25

11 310,685 170,135 1.83
12 47,240 8,697 5.43
Total 3,325,376 1,701,144 1.95

E. Run Encoding

The second phase of the compression algorithm
development was to reduce the redundancy in the
Z coordinate. Much as in the case of images, large
shifts in the data values of adjacent pixels or grid cells
are rare. The bathymetric files, however, have a high
frequency of null cell values, indicating that data do
not exist for the cell. These null values are represented
by a zero depth for that cell. Also, because of the 0.1-m
resolution of the bathymetric grid cells, it is unlikely
that long strings of equal Z values will occur frequently.
This precludes the use of the typical run-length
encoding technique for Z value storage. With
run-length encoding a single value, along with its
number of times of occurrence, is used to represent
a string of values. This technique, however, is useful
to represent strings of zero depths that do occur
frequently.

Taking advantage on the dependencies that typicaity
exist between successive grid cells, a different type of
run encoding was devised for the storage of the
Z values. This algorithm outputs an 8-bit value
corresponding to the run length, or number, of Z values
to follow. This number is then followed by the 16-bit
integer representation of the starting Z value. Each
successive byte in the run represents a + 7-bit delta
from the previous value. A Z value that cannot be
represented by a 7-bit delta from the previous value
terminates the current run and starts a new run. The
exception to this scheme is the occurrence of a null
value. This null value is represented by a maximum
negative displacement from the preceding Z value.
Therefore, the maximum acceptable displacement
ranges from -127 to 127 units (in this case a unit is

Table 2. Compression of ASCIl XYZ files to run encoded

Table 3. Compression of ASCH XYZ files to bit-packed

partial grids. partial grids.
ASCH XY2 Partial Grid ASCIl XYZ Partial Grid
File File Size File Size Reduction File File Size Fite Size Reduction

Number [Bytes] [Bytes] Factor Number [Bytes) [Bytes] Factor
1 299,726 27,813 10.78 1 299,726 26,056 11.50

2 252,211 21,130 11.94 2 252,211 18,940 13.32

3 295,033 23.214 12.71 3 295,033 20,557 14.35

4 272582 21,432 12.72 4 272,582 18,839 14.47

5 268,383 21,158 12.68 5 268,383 17,602 15.25

6 268,890 21,209 12.68 _ 6 268,890 16,919 15.89

7 349,295 28,666 12.18 7 349,295 26,598 13.13

8 376.296 34,539 10.89 8 376,296 34,796 10.81

9 300.285 24,533 12.24 9 300,285 19,782 15.18

10 284,750 23,644 12.04 10 284,750 21,207 13.43
11 310.685 30,262 10.27 11 310,685 28,537 10.89
12 47.240 4910 9.62 12 47,240 4,422 10.68
Total 3.325.376 282510 11.77 Total 3,325,376 254,255 13.08

0.1 m), with -128 representing a null value and having
no effect on the summation of delta’s computation.
A null value run length of 4 or greater also terminates
the run, and a null run is created. A null run is
represented by a zero byte followed by the actual run
length.

As indicated by Table 2, this algorithm resulted
in a significant compression of the original point data
by a factor of about 10 to 1. The source code for the
compression routine is listed in Appendix B. One
of the problems with this algorithm is the limit placed
on the size of the Z value. Sixteen bits allows for a
maximum depth of 6553.6 m, which although adequate
for this sample data, would not suffice for worldwide
coverage. Also, an analysis of the run lengths for
nonzero Z values revealed that for several of the data
sets, an 8-bit delta value is insufficient to produce run
lengths of adequate size. Fragmentation of the runs
into average lengths of 4 or 5 Z values causes excessive
overhcad due to the requirements to store a run-length
value and 16-bit Z start value for each run. A higher
allowable delta value would have been able to
concatenate these runs at the expense of 1 or 2 bits per
Z value.

F. Bit Packing

To solve the problems associated with the previous
algorithm and to achieve higher compression ratios,
the run-encoding compression algorithm was modified
to contain an optimized number of bits for the starting
Z value associated with each run within a partial grid
and for the partial grid’s delta Z values. Within partial
grids the number of bits used to store these values is

fixed and is determined by data analysis during the first
pass. The starting Z value for each run is stored as an
offset + 1 from the minimum Z value in the data set.
The number of bits required is no more than is needed
to store this offset for the maximum Z value in the
data set. The number of bits needed to store the delta
values is determined by choosing a size that will
accommodate 95% of the changes in adjacent Z values.
The 95 percentile was chosen somewhat arbitrarily
through experimentation.

Because the resulting output no longer conformed
to word and byte boundaries, generic bit-packing
routines were developed to place a bit string of up to
32 bits long into an array at any starting bit offset from
the start of the array. The corresponding unpacking
routine was also developed and results are shown in
Table 3. The source code for the compression
algorithms is listed in Appendix C. The source code
listing for the decompression algorithm is provided in
Appendix D.

The header file listed in Table 4 describes the infor-
mation included at the beginning of each partial grid.
It is intended to be flexible enough to store gridded
data of any type and resolution varying from 1 to 65536
increments per degree. The resolution is determined
by the value of the integer variable GRIDS, which
indicates the number of cells in each row. The integer
variable MULT is a scale factor that is applied to the
Z values. The value of MULT is itself scaled to 0.001
units, such that a MULT value equal to 100 indicates
that all Z values stored are to be multiplied by 0.1 to
arrive at their original values. The character variable
UNIT can be used to indicate that the gridded Z values
are stored at some resolution other than meters, i.e.,
fathoms or feet.

Table 4. Partial grid header description.

struct pheadr{

int muit;

|3

unsigned int degree; /-(lon + 180)+ 180 + (1at + 90)»/

unsigned int grids; /«cells per row and grid«/

unsigned int minx; /eminimum x cell value for data sets/

unsigned int miny; /«minimum y ceil value for data set-/

unsigned int maxx; /emaximum x cell value+/

unsigned int maxy; /emaximum y cell value+/

unsigned int minz; /+minimum stored z value minus 1in data set«/

f+unit muitiplier « 1000+/

unsigned char unit; /s-undefined--set to 0 to indicate meters«/

unsigned char pack; /.undefined--set to 0 to indicate packed format./

unsigned char ubit; /<high 4 bits plus 8 is # of bits to store z+/
Islow 4 bits used for size of run length code«/

G. Future Compression Enhancements

It is in no way implied that the algorithm presented
here represents the final word on compression of the
partial grids. Nor is it indicated that a single algorithm
should be used for all cases. Therefore, included with
the header information for each partial grid is the
character-variable PACK, which can be used to
indicate the type or version of the decompression
routine that is needed to unpack the partial grid. Other
methods of compression could be developed for storing
nonswath data that is collected in the form of random
tracks of center beam depths. These data should stiil
be gridded, but could be represented by a series of
graphic line segments followed by the Z values of the
cells that are crossed by the line segments.

In determining the boundaries of partial grids, the
corners of the bounding rectangle are presently chosen
with only a single north-up orientation. In cases of
collected swath data at other than north-south or east-
west survey tracks, this method creates rectangles that
are larger than those actually needed to contain the
swath data. The excess area must then be filled with
n»ll values and, hence, requires additional storage. An
alternate method of partial grid compression could be
developed that would consider the angle of orientation
of each partial grid that would minimize the fill data
required.

Also, consideration of the convergence of longitude
at the higher latitudes should be considered in grid
spacing. A 0.1-minute grid spacing at 75°N represents
a much denser horizontal spacial resolution than a
0.1-minute grid spacing at the equator. Provisions
should be made to allow for differing grid spacings
for both the X and Y dimensions. This could be
achieved by replacing the single integer, GRIDS, in the
partial grid header with two separate grid spacing
values. Borrowing from the scheme used by the
Defense Mapping Agency to represent elevation values

for the Digital Terrain Elevation Data, the following
table could be adopted:

Zone Latitude Spacing Lat/Long
I 0-50° N-S 6 x 6 arc seconds
11 50-70° N-S 6x 12 arc seconds
1 70-75° N-S 6% 18 arc seconds
v 75-80° N-S 6 x 24 arc seconds
v 80-90° N-S 6 x 36 arc seconds

IV. Data Base Structure
A. Bathymetric Data Base Management System

Gridded digital bathymetric data do not conform
readily to any of the existing data base models that
are in use by off-the-shelf DBMSs. Generally, to
incorporate a data set into a DBMS requires a storage
overhead of about 2.5 times that of the original data
set. Since DBMSs do not have provisions for dealing
with compressed data, this multiplication factor would
have to be applied to the noncompressed bathymetry
and would result in a total storage requirement in the
tens of gigabytes. Even if these storage requirements
were not the limiting factor, the overhead costs in terms
of speed for dealing with the massive number of
individual records would render the DBMS useless for
most bathymetric applications.

The advantages of using modern-day DBMSs are
significant, however, and can provide a simple,
standardized user or application program interface to
the data. In particular, the relational data base model
has gained in popularity over the past years, and
DBMS:s based on this model are available from many
different vendors. Off-the-shelf relational DBMSs have
been adapted to run on practically every type of
computer system from desktop microcomputers to
supercomputers. Data bases conforming to this model
therefore offer a greater degree of system independence

Table 5. Relational DBMS bathymetric organization.

TABLES
PLATFORM

ATTRIBUTES

PLATFORM_ID
NAME

SURVOP SURVOP_ID
START__DATE
END__DATE

PARTIAL_GRID PG_ID
GRID__SIZE
NW__CORNER
SE__CORNER
START_DATE
START_TIME
NAV_QUALITY
SONAR_QUALITY
CLASSIFICATION

PG_ID

SONAR_TYPE__CONFIG
NAV_TYPE__CONFIG

PLATFORM__ID (Pointer into PLATFORM table)

SURVOP__ID (Pointer into SURVOP table)

ricE__NAME (Pointer to where actual Z value data is stored)
CELL ONE__DEGREE__ID

and data exchange capabilities. Relational DBMSs
present the user with a uniform and consistent
view of the data. They are designed to simplify the
process of accessing the data in such a way that data
queries, which in the past could be performed by
only applications programmers, can now be easily
performed by the data user. Also, many relational
DBMS vendors have adapted a common set of English-
like commands and syntax known as the Structured
Query Language (SQL) for accessing the data base.
This standardization provides cost savings through
reduced training requirements and also provides a
common user interface to a multitude of DBMSs. Since
the cost of off-the-shelf DBMSs can be amortized over
many software packages sold, this cost is generatiy far
less than that of in-house development.

Although it is unlikely that the entire oathymetric
data base can be incorporated in a DBMS, an
alternative is available. If the griddec pathymetric data
were delineated into partial grids in such a way that
all attributes pertaining to the depths for that partial
grid remain constant, then a relational DBMS could
be used to organize a directory of partial grids.
Important attributes associated with the depth data
include sonar and navigation equipment descriptions,
SURVOP identifier, security or access indicators,
pointers to archived raw or nongridded bathymetry,
navigation and sonar quality, general location (the
I° geographic square in which the partial grid is

contained), ship name, etc. These attributes could be
organized into a relational data base structure in order
to take full advantage of relational DBMS capabilities.
Instead of providing actual bathymetric depths, data
base queries would result in a list of pointers or path
names to the appropriate partial grid files that satisfy
the conditions of the query. The partial grids would
then have to be accessed and possibly decompressed
in order to process the actual bathymetry.

Table 5 contains a possible set of tables and
attributes needed to access the bathymetric partial grids
through a relational DBMS. By far, the largest table
would be PARTIAL_GRID. Estimates of the number
of records that would te included in this table range
up to 1 million. If the relational DBMS used supported
binary as opposed to strictly character representation
of the attributes, the size of each record would be
25 bytes. This amount would yield a possible total table
storage requirement of 25 Mbytes. If strictly ASCH]
character representation is allowed, then the size of
this table alone could easily exceed 100 Mbytes.

The SURVQP table requires about 1000 1ecords to
represent the past 30 years of OSP survey operations.
The PLATFORM table requires far fewer records,
since there is basically one record for each time the
navigation or sonar equipment has been upgraded on
a survey ship. The CELL table is actually redundant,
since the same information can be obtained by
examining the NE_CORNER and SW_CORNER of

each of the entries in the PARTIAL_GRID table.
The purpose of including a CELL table is to speed the
retrieval of data by area. Without this table, access to
bathvmetric data by area would require a sequential
searcn through each record of the PARTIAL_GRID
table. The CELL table requires one record for each
record in the PARTIAL_GRID table.

B. Processing

To process the bathymetric data for inclusion into
this data base structure, the raw data received from
each survey operation would be filtered and edited in
much the same way as it is presently. The gridding
process would then merge navigation and bathymetry
to produce the 0.1-minute grid for the swath-covered
areas. During this gridding process two alternate
methods for partial grid selection are proposed.
Originally it was thought that as the bathymetric data
is processed chronologically, each time a 1° line of
latitude or longitude is crossed or the navigation or
sonar collection quality changes, a new partial grid and
the appropriate data base records are created. The
navigation and sonar quality is generally determined
as a result of the operational mode at the time of
data collection. In some cases, as on the fringe
of loran coverage or with limited Global Positioning
System (GPS) coverage, this navigation mode may
change every few minutes. The changes cause
a proliferation of very small partial grids and have a
detrimental effect on the size and performance of the
relational DBMS. A filter could be applied that would
help to minimize this effect by ignoring mode changes
that take place for only short periods. These short-
duration mode changes seem to have little effect on
the overall navigation quality.

The alternate method is to collect the set of all data
for a SURVOP that exists within a 1° geographic
square with a certain navigation or sonar mode of
operation. This set of gridded data is then combined
into a single partial grid, representing bathymetry of
consistent quality for that SURVOP in that geographic
area. The effect of this method is to minimize the
number of partial grids and associated data base
records at the expense of possibly larger and less-related
partial grids. The partial grids would be larger, since
the bathymetry included is no longer contained by
a single swath, but by multiple swaths that may occur
anywhere within the 1° square. The minimum
bounding rectangle defining the partial grid must
include not only all swath data, but also all of the null-
filled data gaps that exist between swaths within this
rectangle. Perhaps a more detrimental effect of this
method is the fact that bathymetry swaths with the
same data quality may have been collected within that
1° geographic area over a period that may extend over
several days of operation. The storage of the start date
and time, as well as detailed pointers to the start of

the archival raw data for this partial grid, would be
of limited value if time gaps this large could exist within
a single partial grid. If it is determined that these
attributes are not required to resolve anticipated
queries, then they could be eliminated, and this method
(or a modified method that considers trade-offs
between the size and number of partial grids) could
be developed.

Based on the two alternatives discussed, estimates
of the number of partial grids that would be generated
for each SURVOP range from as few as 40 to as many
as 1000. Since as many as 1000 SURVOPs have been
done for OSP ships over the past 30 years, up to
1 million partial grids and associated relational DBMS
records could result. Although large, this size data base
is certainly well within the scope of current DBMS
technology.

The output of the gridding program is a set of partial
grid files and a set of appropriate data base records
containing the attributes of these partial grids. These
data base records would likely be in ASCII form in
separate files with record formats identical to that of
the corresponding DBMS tables. The final step is to
update the relational DBMS tables by inserting the
newly formed data base records, compressing
the partial grids, and copying them to the appropriate
directories.

C. Production

At this time, the 0.1-minute bathymetric grid is not
intended as a NAVOCEANO product and will
not likely be available for distribution outside of
NAVOCEANO. It will be used to support the
production of large-scale, special-purpose charts
required by the Navy. There is also widespread interest
in a 0.5-minute grid product in areas with sufficient
bathymetric coverage. Such a product would have
immediate Antisubmarine Warfare (ASW) applica-
tions. In recognition of this application, the Defense
Mapping Agency (DMA) has validated a 0.5-minute
Digital Bathymetric Data Base (DBDB-0.5) product.
The 0.1-minute bathymetric data base described here,
in conjunction with interactive graphic workstations,
would provide valuable tools for the creation and
maintenance of the DBDB-0.5.

The 0.1-minute grid would allow for queries of the
data base to be made by geographic area. The resulting
list of partial grids should be sorted in reverse order
of quality, such that as each partial grid's data
values are placed into the workstaticn’s memory, cells
of higher-quality data automatically replace cells of
lower quality. As the lowest quality data, the DBDBS
(S-minute grid bathymetry) would be interpreted to a
0.5-minute grid to provide an initial overlay. Then
any existing 0.5-minute grid data would replace
this background in reverse order of quality. Purely
interpreted data would have the lowest priority,

followed by data that have been graphically edited and
regridded. Bathymetry data at the 0.l-minute
resolution collected as a result of random ship tracks,
SEABEAM, or OSP surveys would also be accessed
in reverse order of quality and regridded to 0.5-minute
resolution. Each of these data sets would likewise
replace any data from previous sets. The end result
would be fully populated, 0.5-minute grid representing
the best quality data available. Of course, this
grid would likely be far from the finished product and
would need additional editing. A separate grid or
overlay could be simultaneously constructed in a
similar manner to represent each cell’s associated
quality. When the bathymetry grid is contoured for
display, this quality overlay could provide color
shading to assist the operator in making editing
decisions with respect to data quality or security
classification.

V. Cnclusions

The NAVOCEANO internal bathymetric data base
currently consists of a set of 500 reels of highly com-
pressed bathymetric data. Each tape may contain the
bathymetry from several survey operations (normally
each survey operation is equivatent to about 1 month
of survey data). Within each survey operation file, data
are stored as they are collected—chronologically. This
method creates a serious problem when data are to be
accessed by area, since data for a certain area may
be located on several tapes, each of which must be
searched sequentially to access the appropriated data.
Because of the data base’s enormous size (about
20 Gbytes), the typical solution of multikeyed access
via direct storage devices is very expensive and would
likely require optical media arranged in a jukebox
device.

Spectral analysis of these bathymetric data,
conducted by NAVOCEANO, has revealed that these

data zre stored at a much higher resolution than is
warranted due to the combined noise level induced by
the collection sensors. The volume of bathymetric data
can be reduced by decreasing the storage resolution
to that which can be legitimately supported beyond the
collection sensor noise level. This method of siorage
can be accomplished by gridding the data to a
0.1-minute resolution in the areas of actual swath
coverage. Analysis reveals that this step alone can result
in a 40 to 1 reduction in the storage requirements. This
report detailed the development of a compression
routine that achieves a further reduction ratio of about
13to 1 and proposes a format for the resulting partial
grid. The format is flexible enough to allow for
different grid resolutions, as well as future
enhancements to the compression algorithm.

The combined compression ratios have the poten-
tial of reducing the current bathymetric storage
requirements by a factor of 500, with minimum loss
of actual bathymetric data resolution. This would
reduce the current 20 Gbytes of storage requirements
to a mere 40 Mbytes, which is well within the range
of the capacity of inexpensive direct access devices.
Data access methods to this data base could also be
greatly enhanced by a relational DBMS used to
organize information associated with the compressed
partial grids. Conditional multikeyed data retrieval
could be accomplished both interactively or within
procedural language programs through the use of the
de facto standard SQL.

VI. Bibliography

1. Held, Gilbert. Data Compression, Techniques
and Applications, Hardware and Software, 2nd ed.,
John Wiley & Sons Ltd., 1983,1987.

2. Fox, Chistopher G. Description, Analysis, and
Prediction of Sea-Floor Roughness Using Spectral
Models, Naval Oceanographic Office, Stennis Space
Center, MS, TR 279, 198S.

Appendix A

Source Code for Compression to Simple Partial Grid File

/* This routiné opens the file that s specified by the first argument
and reads through it to determine the boundaries of the partial grid.
The partial grid is defined as a 2 dimensicnal array with the first element
containing the value that is located at (mirx,miny). The array extends in
the x direction until maxx-minx+l. The y cdimension is ymax- ymin+l

The first pass through the input £file determines the minimum and
maximum values for x and y defined by minx, meuxx, miny, and maxy. The secend
pass throucgh the input file builds a rectanguler array or partial grid
contairing the z values. This array is written to the output file that is
defined by the second argument. If there is nc z value for a particular
coordinate, a null or zero z value is output.

*/
f1io~lude <stdio.h>
#1 cl :de <fcntl.h>

/*The following structure is used as the heacer fcr the output partial grid
file. Not 2ll information is relavent at this time*/

struct pheadr{
unsigned int degree;/*(lon+180) *1&l~(lat+80)~/
unsigned int grids; /*cells pe rcw anc ¢grid=~/

unsigned int minx; /*minimum X cell value fcr data set*/
unsigned int miny; /*minizmum y ~ell velue Zor data set*/
unsigned int maxx; /*maximum x cell value*/
unsigned int maxy; /rmaximum y cell value*/

tnsigned int minz; /*minimum stored z value minus 1 in data set*/

int mult; /*unit multipliier = 1000~/

unsigned char unit; /*uncdefined--sez to 0 to indicate meters*/

unsigned char pack; /*uncdefined--set to 0 to indicate packed format*/

unsigned char ubit; /*high 4 bits tlus 8 is £ of bits to store 2*/
/”low & bits uvsed for size of run length code*/

main(argc,argv)
int arac;

char *arav(]:

{

struct pheadr head;

char start=1;

int zero=0;

uncsigred int #,y,z,minx, maxx,niny, mary,rlen, £¢;
tnsigned int current,next,diff;

FILE *tfp, *fopeu();

/*check for too few arguments*/

if(argc < 3){
fprintf (stderr, "Usage: porid input filename output filename\rn");
exit (1)
}

/*does the input file exist and can it be opened*/

if((fp=fopen (*++argv, "r"))==NULL) {
fprintf ("pgrid: can’t oren %s\n", *argv);
exit(1l);
}

/*The input file ccntains header irmicrmaticn such as navigation and scnar
gualitv, latitude and logitude cecrees, etc. The format of this header is

subject to change, therefore the rcuzine to read this infcormation has been
separated from this modual.*/

rheader (fp, &head) ;

/*The reader routine is separated Ircm the main reoutine to limit the impa
¢f future format changes. The rezcder is p. ided with the file pointer, 2
It reads an input file record ard rceturns Jhe values of %, y and z.*/

while (reader(fp,&x,&y,sz)){
if(start){
/*1st time throuch--initizlize maxx,maxy,miny,minx*/
minx=maxx=x;
miny=maxy=y;
start=0;
}
else(
if(x < minx)
minx=x;
else
if(x > mexx
TENN=X;
if(y < miny)
miny=y;
else

}

/*End of first pass--partial gricd cdimensions have been defined*/

maxx++;

10

maxy++:;
rlen=maxx-minx;

/*Go to the beginning of inrut file for second pass*/

fclose (fp)
fp=fopen(*argv, "r");

/*Create and open output file. If it alreacy exists it will be overwritten.*/
fd=creat (*++argv,0766);

close (fd);

/*Output file must be binary. The next line is non-standard used for TURBO C*/
_fmode=0_BINARY;

fd=open(*argv, 2);

/*Read header information*/

rheader (fp, &éhead) ;

/*Form output header for partial gridr/

head.minx=minx;

head.miny=miny;

head.maxx=maxx;

head.maxy=maxy;

write(fd, ¢head, sizeof (head));

/*current 1s used to indicate how many rnull values to fill between actual z
values*/

current=0;

/*Read through input file and ocutput 2z values to partial gricd*/
/*reader returns a false or zero value fcr end of file*/

while (reader (fp, &x, &y, &2)) {
X-=minx;
y-=miny;
/*Determine how many null values rfetween this z value and the last*/
next=y*rlen+x;
diff=next-current;
current=next;

/*Fill partial grid with null z values*/

11

while(diff-- > 1)
write(fd, zero, 2);

/*Write out z value*/

write(fd, z,2);
}
/*No need to fill from last z value to end of array--null values are assumed*/

}

/*The following routine is used to read the header information from an xyz
file. The latitude and longitude in degrees is the only information irn the
header that is actually read at this time. The variable degree is used to
combine lat and lon into a single integer value. The variable mult=100
indicates that the z values stored in the partizl grid have been multiplied
by 10. The variable grids=600 indicates that the resolution in the x and y
dimensions is .1 minutes.*/

rheader (fp, head)

FILE *fp;

struct pheadr *head;

{

c¢har buf{801],1i=0;

int lat,lon;

while ((buf[i++]=getc(fp)) !'= ’'\n’');
sscanf (buf, "%d %d",&lat,&lon);
head->degree=(lon+180) *180+ (1lat+90);
head->mult=100;

head->grids=600;

}

/*The reader routine reads the xyz file that was written out using a FORTRAN
(2i3,15) format. The x and y coorcinates rerresent .1 minute offsets frem the
corner of the l-degree cell. The z values are in meters*10. Each xyz value 1is
written 1 to a line. A zero or false value is returned for end of file.*/

reader (fp,x,y,2)

FILE *fp;

unsigned int *x,*y,*z;
{

char buf(80C],3;

/*Check for EOF*/

if ((buf(0]l=getc(fp)) !'= EOF){
j=1;

/*Get a line until line feed or ECI*/

else

while ((buf([jl=getc(fp)}) '= "\n’ && buf[j++]
/*Fill leading blanks with leading zeros.*/

for (§=0; j<=4; j++)
if(buf({jl==' ")buf(jl='0';

/*Read from memory using format.*/
sscanf (buf, "%3d %3d %d4d",x,y,2):
return 1;

}

return 0;

13

!= EOF);

Appendix B

Source Code for Modified Run-encoded Partial Grid Compression

/* This routine opens the file that is specified by the first argument
and reads through it to determine the boundaries of the partial grid.

The partial grid is defined as a 2 dimensional array with the first element
containing the value that is located at (minx,miny). The array extends in
the x direction until maxx-minx+l. The y dimension 1is ymax-ymin+1l.

The first pass through the input file determines the minimum and
maximum values for x and y defined by minx, maxx, miny, and maxy. The seccnd
pass through the input file builds a rectangular array or partial grid
containing the z values. This array is written to the output file that is
defined by the second argument given in the MS-DOS command line. If there is
no z value for a particular coordinate, a null or zero z value is output.

*/

/*The follewing structure is used as the header for the cutput partial gric
file. Not 2ll information contained in the heacder is relavent at this timerx/

n

3]

uct pheadr/|
unsigned int degree;/*(lon+180)*180+(lat+90)*/
unsigned int grids; /*cells per row and grid*/
unsigned int minx; /*minimum x cell value for data set*/
unsigned int miny; /*minimum y cell value for data set*/
unsigned int maxx; /*maximum x cell value*/
unsigned int maxy; /*maximum y cell value*/
unsigned int minz; /*minimum stored z value minus 1 in data set*/
int mult; /*unit multiplier = 1000*/
unsigned char unit; /*undefined--set to 0 to indicate meters*/
unsigned char pack; /*undefined--set to 0 to indicate packed format=*/
unsigned char ubit; /*high 4 bits plus § is # of bits to store z*/
/*low 4 bits used fcr size of run length code~/

-
o

}:

¢include <stdio.h>

=~

*The following header file is included in order to permit binary I/0. It is
anguage specific to the TURBO C compiler*/

$include <fcntl.h>

unsi¢cned int kount,z,last_z;

int £d; /*fd is the file descriptor for the output file*/
iong rext,current,diff;

unsicned char buf(300];

unsicned char start=1;

main(arge, argv)

15

int argc:

char *argv(]}:

{

int xc,yc,i,doff;

unsicned int x,y,minx,maxx,miny,maxy,rlen;
unsicned int xsave,ysave,dsave,lat,lon,grids;
FILE *fp,*fopen():

struct pheadr head;

/*check for too few arguments*/

if(arcc < 3){
fprintf(stderr, "Usage: pgrid input_filename output_filenarme\n");

exit (1)

}
/*dces the input file exist and can it be opened*/
if((Iz==Icpen(*++argv, "r"))==NULL) {

fprintf("pgrid: can’t open %s\n", *argv):

exit(l);

}
/*The input file contains header informaticn such as navigaticn and sonar
cualizvy, latitude and longitude degrees, etc. The format of this header is
stbiecz to change, therefore the routine tc reacd this informazion has Lesn
separzted from this modual.*/
rrhezcer (fp, &head);
/*The reacer routine is separated from the main routine to limit the impac:
of future format changes. The reader is provided with the file pointer, fIr.

It rezds an input file record and returns the values of x, y and z.*/

winile (reacer(fp,&x,&y,4&z)){
if(start){
/*1st time through--initialize maxx,maxy,miny,minx*/
M1INX=Maxx=x;
miny=maxy=y:;
start=_C;
}

1f(x < minx)
minx=x;
else
if(x > maxx)
MaxXx=x;
if(y < miny)
miny=y;
else

16

if(y > maxy)
maxy=y;

}
/*End of first pass--partial grid dimensions have been defined*/
maxx++;
maxy++;
rlen=maxx-minx;

/*Go to the beginning of input file for second pass*/

fclose (fp);
fp=fopen(*argv, "r");

/*Create and open output file. If it already exists it will be overwritcen.-

fd=creat (*++argv, 0766) ;
clecse (fd);

/*Output file must be binary. The next line is non-standard used for
_fmode=0_BINARY;

fd=cpen(*argv, 2);

/*Read header information*/

rheader (fp, &head) ;

/*Form output header for partial grid*/

head.minx=minx;

head.miny=miny;

head.maxx=maxx;

head.maxy=maxy:;

write (£d, &head,sizeof (head)):
starct=1i;

/*current is used to incdicate how many null values to fill between ac:tual =z
values*/

current=0;

/*Read through input file and output z values to partial.grid*/
/*reader returns a false or zero value for end of file*/

while(reader (fp, &x,6&y,&2)){
Xx-=mirx;

17

/

y-=miny;
next=(long)y*rlen+x;
diff=next-current;
if (start){
/*Output any null runs as required and initialize for 1st
run*/
newrec () ;
start=0;
}
else
/*1f the number of nulls is less than 4 may be more eccnonmical
to include them in z run &s -128 values--indicates nulls*/
if(diff < 4){ i
/*1f overflow of z run--start new run*/
if(diff+kount > 25S)newrec|();
else/{
/*Check for offset overflow*/
if(kount == 255 || abs (doff=z-last_2z)>127){
/*Current run ends here*/
/*If only 1 null value and it can

/*it is more ecconomical to output
here*/
if(diff==1 && kount<255){
diff--;
buf(kount++ + 2]=-128;
}
/*ouvtput this run and start next*/
newrec();

}

wnile(diff>0) {
diff--;
buf (kount++ + 2]=-128;
}
buf(kount++ + 2]=doff;
last_z=z;
current=next+l;

}

elsel

}
}

/*write out current run and null run and start new run*/
else newrec():;
}

/*force out current run*/
diff=0;
newrec();

}

18

/*The following routine forces out a z-run that is stored in buffif it is not
the first call--start not equal to 0. It recalls putz to output any null
runs that are required. Finally it initializes for a new z run.*/

newrec{)
{

if (!start) {
/*kount is the length of the run. Store it in the 1lst byte.*/

buf [0]=kount;
write (fd, &buf, kount+2);
}

/*Qutput any null runs necessary*/

if(diff > 0)
putz();

/*Store current z value into run buffer.*/

buf{2]=z & 255;
buf{ll=2z >> 8;

/*Minimum non-null run legnth is 1 z value long*/
kount=1;

/*last_z is the last z value encountered. Used to calculate the offset c¢f
current
value from the previous z value*/

last_z=z;

/*current is the position in the partial c¢rid that the next z value shculcd ke
at if there are no zero fills needed*/

current=next+1l;

}

/*PUTZ is a routine that outputs a run of rnull z values. A run of null values
is defined as a count field follcwed by a z value of zerc. The count field
indicates that the following zerc value is to ke repeated count + 1 times~/

putz ()

{

buf[0]=0;

/*There may be multiple runs necessary to define total string of nulls*/

while(diff) {
/*Output maximum length or whatever is left*/
/*The lst byte of the run is length-1. Length ranges from 1 to 256*/
buf[1}=(diff >= 256) 2 255 : diff-1i;
/*Update the count of nulls remaininc=/

diff-=buf(l];
diff--;

/*Force out this run*/

write (fd, &buf, 2);
}

/*The following routine is used to read the heacer information fromanxyz
file. The latitude and longitude in degrees Zs the only information in the
header that is actually read at this time. The variable degree is used to
combine lat and lon into a single integer valte. The variable mult=100
indicates that the z values stored in the zarziel c¢rid have been multiplied
by 10. The variable grids=600 indicates that the resnlutrion in the x arnd vy
dimensions is .l minutes.*/

rheader (fp, head)

FILE *fp;

struct pheadr *head;

{

char buf[80],1i=0;

int lat,lon;

while ((buf(i++]=getc(fp)) !'= "\n’);
sscanf (buf, "%d %d",&lat,&lon);
head->degree=(lon+180) *180+ (lat+90);
head->mult=100;

head->grids=600;

}

/*The reader routine reads the xyz file thzt wes written out using a FCOR
(213,15) format. The x and y coordinates recrssent .1 minute offsets frc
corner of the l-degree cell. The z values are In meters*10. Each xyz v
written 1 to a line. A zero or false valtue is urned for end of file.

ty)
M
ot

reader (fp,x,y,2)
FILE *fp;
unsigned int *x,*y,*z;

20

{
char buf(80C], 3j;

/*Check for EOF*/

getc(fp)) != EOF){

.
’

if((buf{0]
j=

[}

/*Get a line until line feed or EOF*/
while ((buf([jl=getc(fp)) !'= '\n’ && bufj++]
/*Fill leading blanks with leading zeros.*/

for(3=0;3j<=4; j++)
if(buflj}==' ")buf[j)="0";

/*Read from memory using format.*/

sscanf (buf, "$3d%$3d%d", x,y,z);
return 1;

}
else
return 0;

21

!= EOF);

Appendix C

Source Code for Bit-packed Run-encoded Partial Grid Compression

/* This routine opens the file that is specified by the first argument
and reads throucgh it to determine the boundaries of the partial grid.
The partial grid is defined as a 2 dimensional array with the first element
containing the value that is located at (minx,miny). The array extends in
the x direction until maxx-minx+l. The y dimension is y:ax-ynln+l

The first pass through the input file determines the minimum and
maximum values for x and y defined by minx, maxx, miny, and maxy. The second
pass thrcocugh the input file builds a rectangular array or partial grid
containinc the z values. This array is written to the output file that is
defined ty the second argument given in the MS-DOS command line. If there :is
no z velue for a particular coordinate, a null or zero z value is cutput.
x/

/*The Icilowing structure 1is used as the header for the output partial grid
file. Yot ell infcrmation contained in the header is relazvent at this time~/
struct pheadr{

tnsigned int degree;/* (lon+360) *180+ (lat+50)*/

trnsigned int grids; /*cells per row and grid*/

unsicred int minx; /*minimum X cell value for deatz set*/

trnsicned int miny; /*minimum y cell value for datz set=/

tnsicned int maxx; /*maximum x cell value*/

unsigned int maxy; /*maximum y cell value*/

unsicned int minz; /*minimum stored z value minus 1 in data set*/

int mule; /*unit multiplier * 1000*/

unsicned char unit; /*undefined--set to 0 to indicate meters*/
tnsicred char pack:; /*undefined--set to 0 to indicate packecd feormac»/
tnsigned char ubit; /*high 4 bits plus 8 is # of kits to stcre z*/
/*low 4 bits used for # of bits for z value
ffset~/
I

#gincluce <szdic.h>

/*The fcllecwing neader file is included in order to permit binary I/0. It is
languece sgeciiic to the TURBO C compiler*/

¢include <fcntl.h>

unsicned int kcunt,z,last z;

int £c; /=fc is the file descriptor for the output file=/
long next,current,diff;

unsigned char zuf[3000];

unsigred char start=1;

unsigned lcong nmxvel,hibit,doff;

23

unsicned iInt dbits,cbits,hbits,mhval,bsave,bent;

main(argc,argv)

int argc;

char *argv(]:

{

int xc,yc, i;

unsicned int x,y,minx,maxx,miny,maxy,rlen,min,max;

unsigned int xsave,ysave,zsave, lat,lon,grids;

floaz suml,cl=0;

long cur{i={1,2,4,8,196,32,64,128,256,512,1024,2048,4096,8192,2<<14,2<<15,
2<<16,2<<17,2<<18,2<<19,2<<20,2<<2]1,2<<22,2<<23,2<<24};

5
E *fp,*fopen();
vct pheadr head;

/=check fcr too few arguments*/
3) 4

crintf(stderr,"Usage: pgrid input_filename output_ filename\n");
=it (1)

P € (v
1fi(arcc

Mty A

/*dc=s the input file exist and can it be opened*/

if((Ig=fccen(*++arcv, "r"))==NULL) {

Zcrintf("perid: can't open %s\n",*arg ,

exit (1),

}
/*Trhe input file contains heade- information such as navigation and scrar
cuality, latitude and longitude acegrees, =~. 7'~ format of this header is
sutiect Tz change, therefore the routine to read this information has been
separatec from this modual.*/ '

= rezier rcutire is separated from the main routine to limit the impac:
cture Zformat changes. The reader is provided with the file pointer, fp
It rezcds an input file record and returns the values of x, y and z.*/

wiille (rezder (fp,6&x,6&y,&2)){
I(staru) {
/*1st time through--initialize maxx,maxy,miny,minx*/
minx=maxx=x;
miny=maxy=y.;

24

if (x==++xsave && y==ysave) {
diff=abs (z-zsave):
Cl++;
i=0;
while(diff>cut[i++]);
cnt(i]+=1;
}

if(x < minx)

minx=x;
else
if(x > maxx)
maxx=x;
if(y < miny) -
miny=y;
else
if(y > maxy)
maxy=y;
if(z < min)
min=z;
else
if(z > max)
max=z;
)
zsave=z;
xsave=x;
ysave=y;

}

/*End of first pass--partcial grid dimensions have been defined*/

maxx++;

maxy++;

/*Calculate the value of cbits, the # of bits used to store the offset from
the previous z value. It is calculated as the bits needed to store $5% of
the cffsets ketween consecutive 2z values.*™/

cl*=.95;
stml=0.;
cbits=0;
while((suml+=cnt(cbits++])<cl);
cbits--;

/*hbits and mhval are constants at this time. hbits = 8 and mhval = 255 These
variables are usecd to cefine the maximum run length and could be exper’mentel
with to possicly further optimize the compression.*/

lel ol
yops

- 0

1<<(hbics))-1;

-
<
wnva

8]

/*mxval indicates the maximum offset that is allowed for the z va.ue*/
/*if cbits=8§, mxval=127--allows an offset of + or - 127/

25

mxval=(l<<(cbits-1))-1;

/*hibit is used to indicate a null value in a z-run. Set to mxval+l*/
hibit=mxval+l;

/*min will be subtracted from all z values. Decrement min to avoid zero*/
min--;

rlen=maxx-minx;

/*calculate the number of bits needded to store the maximum z value*/
dbits=0;

z=max-min;

while (cut {dbits++]<z2};

--dbits;

/*Go to the beginning of input file for second pass*/

fclose (fp);
fp=fopen(*argv, "r");

/*Creat and open output file. If it already exists it will be overwritten.-/

fd=creat (*++argv,0766) ;
close (fd);

~e

/*Qutput £file must be binary. The next line is non-standard used for TUREBC C
_fmode=0_BINARY;

fd=open(rargv,2);

/*Read hezcder information*/
rheacder (fp, &head) ;

/*Form outcut header for partial crid+/
head.minx=minx;

neac.miny=miny;

head.marr=maxx;

head.maxy=maxny;

head.minz=min;

head.gack=head.unit=0;
head.ubit=(doits-8)<<4 | cbits;
write(fd,&head, sizeof (head));

start=1;

/*current is used to indicate how many null wvalues to fill between actual :
values*/ '

current =0,

/*Reed thrcugh input file and cutput z values to partial grid*/

26

/*reader returns a false or zero value for end of file*/

while (reader (fp, &x, &y, &2)) {

X-=minx;
y-=miny;
z-=min;

next=(long)y*rlen+x;
diff=next-current;
if (start){
/*Output any null runs as required and initialize for 1lst run*/
newrec{);
start=0;
) B
else
/*If the number of nulls is less than 4 may be more economical
to include them in z run as -128 values--indicates nulls*/
1f(diff < 4){
/*1f overflow ¢f z run--start new run*/
if(diff+kount > mhval)newrec():;
else(
/*Checx for offset overflow*/
if(kount == mhval || abs(doff=z-last_z)>mxval)
/*Current run ends here*/
/*I%f only 1 null value and it can fit=~/
/*it is more economical to output here*/
if(ciff==1 && kount<mhval) {
diff--;
bit _pack(buf,becnt,cbits,hibit);
bcnt+=cbits;
kount++;
}
/*output this run and start next*/
newrec ()
}
else({
while(diff>0){
diff--;
/*hibit is used to indicate a*/
/*null value in a z run=*/
bit_pack(buf,bcnt,cbits, hikit);
bcnt+=cbits;
kount++;
}
bit pack(buf,bcnt,cbits,doff);
last_z=z;
benc+=cbits;
current=next+l;
kount++;

}

27

}
}
/*Force out current run and null run. Start new run*/
else newrec(),
}

/*Force out current run*/

diff=0;

newrec();

while (bsave) {
write(fd, buf,1);
bsave-=(bsave<8)?bsave:8;
}

}

/*The following routine forces out a z-run that is stored in buf if it is nco
the first call--start not equal to 0. It the calls putz to output any null
runs that are required. Finally it initizlizes for a new z run.*/

newrec ()

{

int knt;

/*Force out current z-run if this is nc: the first call*/

if(!start){
/*kount 1s the length of this run. Place it in the buffer=/
bit pack(buf,bsave, hbits, kount);
/*knt is the number of bytes to write. If the last byte is not full it is
placed in position buf[0] and the buffer is filled from the last bit used~/
knt=bcnt >> 3;
write (fd, &buf,knt);
buf[0)=buf{knt];
/*bsave is the start bit location of rnex:t run*/
bsave=bcnt % 8;

}
/*Output null run if needed*/

if(diff > 0)
putz ()

/*Initialize buffer for new z-run*/
becnt=bsave+hbits;
/*Store current z value into run kbuffer.*/

bit pack(buf,becnt,dbits, z);
becnt+=dbits;

28

/*Minimum non-null run legnth is 1 z wvalue long*/

kount=1;

/*last_z is the last z value encountered. Used to calculate the offset of
current

value from the previous z value*/

last_z=z;

/*current is the position in the partial grid that the next z value shculd be
at if there are no zero fills needed*/

current=next+1;

}

/*PUTZ is a routine that outputs a run of null z values. A run of null values
is defined as a count field followed by a z value of zeroc. The count field
indicates that the following zero value is to be repeated count + 1 times®/
putz ()

{

long j:

int i;

/*i = # of bits needed to represent a null run. Z timss hbits is currently 1%

i=hbits<<l;

while(ciff){
/*output max length null runs (mhval=253) urtil cne is < mhval*/
j=(diff > mhval) ? mhval : diff-1;
/*upper half of i bit lergth of j is =0. Pack iInzo buffer*/
bit_pack(buf,bsave, i, j++);
/*update counters*/

diff-=3j;

bsave+=i;

becnt+=1;

}
}
/*The fcllowing routine is used to read the heacer infcrmation from an xy:z
file. The lea:titude and longitude in degrees is tne cnly information in the
header that is actually read at this time. The verizrle cdegree is used to
combine lat &nd lon into a single integer value. The variable mult=100
indicates that the z values stored in the partiel ¢grid have been multiplied
by 10. The veriable grids=600 indicates that the rescluzicon in the x and vy

dimensions is .l minutes.*/

rheader (£fp, head)

FILE *£

29

struct pheadr *head;

{

char buf({80],i=0;

int lat,lon;

while ((buf({i++])=getc{fp)) = “\n’);
sscanf (buf, "%d %d",&lat,&lon);
head->degree=(lon+180)*180+ (lat+90);
head->mult=100;

head->grids=600;

}

/*The reader routine reads the xyz file that was written out using a FORTREN
(213,15) format. The x and y coordinates represent .l minute offsets frcm the
corner of the l-degree cell. The z values are in meters*10. Each xyz value 1is
written 1 to a line. A zero or false value is returned for end of file.*/

reacder (fp, %, v, 2}

FILE *fp;

unsigned 1nt *x,*y, *z;
{

char buf[80], 3;

/*Check for EQF*/

if((buf(0)=getc(fp)) != EOF){
i=1;

= i

/*Get a line until line feed or EOF*/

(o]
O
rrj

while ((buf{ijl=getc(fp)} != “\n’ && buf[j++] !=
/*FTill leading blanks with leading zeros.*/

£or (3=0; 3<=4; ++)
if(buf(jl==" ")buf(3l=r0";

/*Read from memory using format.*/

sscanf(buf, "$3d%3d%d",x,y,2);
return 1;
}
else
return 0;

bit pack(buf,str,n,num)
leng num;
unsigned char *buf;

30

unsigned int str,n;

{

static char msk(8]={0,128,192,224,240,248,252,254};
char *sbyt, *ebyt;

int sbit,ebit,i;
i=str+n;

sbyt=(str >> 3) + buf;
ebyt=(1i >> 3) + buf;
sbit=str % 8;

ebit=i % 8;
i=ebyt-gbyt-1;

if(sbyt == ebyt) {

*sbyt &= msk(sbit] | ~msk([ebit]; -
*sbyt |= (num << (8-ebit)) & (~msk(sbit] & msk[ebit]):
}
else({
*sbyt &= msk(sbit];
*sbyt++ |= (num >> (n-(8-sbit))) & ~msk[sbit]:
while(i--){
*sbyt &= 0;
*sbyt++ |= (num >> ((i << 3) + ebit)) & 255;

}
*sbyt &= ~msk(ebit]:
*sbyt |= (num << (8-ebit));
}

31

Appendix D

Source Code for Bit-packed Run-encoded Partial Grid Decompression

/*The following program is used to unpack or decompress the gridded data that
was compressed using the bit packed relative run encoding technigue. The nare cf
the input file is given as an argument. The output is to the standard outpu
device in the form of 1 line per grid cell with the X and Y compcnent form
as 2I3 followed by the unscaled Z component as I5.*/

.
-t
R

acte

#inclucde <stdio.h>
finclude <io.h>
finclude <fentl.h>
#include <fpack.h>
main(argc,argv)
int argc;
cher *argvl(]:
{
struct pheacr h;
unsicned int fd,x,y,dsave,nin,max,miny,minx,maxx,maxy,cestn;
_fmode=0_BINARY;
if ((fd=open(*++argv,0))<0) {

fprintf(stderr, "pgrid: Could not open %s\n",*argv);

exit (1);

}
printf("\n");
read(fd, &h,sizecf (h));
¢save=h.minz;
min=65535;
maz=0;
for(y=h.miny;vy<h.maxy;y++)

for(x=h.minxz;x<h.maxx; x++)

if(pread(f¢, &deprch, &h)>0) {
if (depth>0) {
cepth+=dsave;
orintf("%$3d %3d %5d\n", x,y,certh);

/*The follewing computaticn ¢f maximum anc
minimum depth 1s unnecessary but is usec és
a cata check*/

if(depth < min)
min=depth;

o=
~ =

y—

e
if(depth > max)
max=depth;

}
else(
printf("%d %d\n",nin,max):

33

exit (0);
}
}

/*The following routine is called for each cell value to be decompressecd.=*/

preacd (£d, cepth, head)

irt £¢, *cdepth;

struct pheadr *head;

{

statlic unsigned char start=1l;

static unsigned int dbits,cbits,hibit,hbits;

int 4&;
static int dsave=(0,df=0,z£=0;
if(start)
/*Initially set up values as defined in the header*/
start=0;
ccits=(head->ubit>>4)+8;
crits=head->ubit&ls;
hblts g;
hibit=1<<{(cbits-1};
}
/*2%f s the number of zeros in this run*/
18(zo) !
z2I--;
“cepth=0;
return 1;
}
else
/*df is the number of depths in this run*/
13(df) {
d=chk (fd, cbits);
df--;
if(d==hibit) {
*depth=0;
return 1;
}
else

if(d & hibit)
=(hibit<<1);
*depth=dsave+d;
dsave+=d;
return 1;
}
else/

d=chk (fd, hbits);
1f(d<0)

return 0;
else

1€(d) {

34

dsave=chk (fd, dbits) ;
*depth=dsave;
df=d-~1;

return 1;

}

zf=chk (fd, hbits);
*depth=0;

return 1;

}

else(

}

/*The Zollowing rcutine reads the ccmpressed file and returns a value
represented by the next n bits*/

long chk (fd,n)
unsigred int fc,n;
{

static unsigned char buf[280]);

leng num;
static unsicned char *ebyt, *sbyt;
static int lby:-=0,bcnt=0;
int i;
ebyt=((bcnt+n-1)>>3) +buf;
if(ekyt >= lbyz+bulf){
sbyt=(zcnt>>3) +0 f
1=0;
while(sbyt< (', +buf))
buffi++l=*sbyt++;
bcnt %= 8
lbyt=re.c(fd, &¢buf(i],256) + i;
if(lbve<=i)return -1;
}
num = unpazx(kbuf,bcnt,n);
bent+=n;

return namy

}

unsigred long unpacx({zuf,str,n)

unsigred char =buf;

ur signed int sIr,n;

{

static char msx[61={0,128,152,224,240,248,252,254};
unsigred long aum;

unsigred char *sbyt, *ebyt;

int sbhit,ebit,i;

i=sgtr+n;

sbyt=(str >> Z) - buf;

35

ebyt=(1i >> 3) + buf;
sbit=str % §;

ebit=1i % 8;
i=ebyt-sbyt-1;

if (sbyt == ebyt){

num = ((*sbyt >> (8-ebit)) & ~msk([8-n]);
}
else/{
num = *sbyt++ & ~msk{sbit}];
while (i--) {
num <<= §;
num |= *sbyt++;

} .
num <<= ebit;
num |= *sbyt >> (8-ebit);

.

}
return nuw;
}

36

Appendix E
Data Sets and Graphics

The following 12 graphics depict the swath coverage of each of the 12
data sets that were provided by the Naval Oceanographic Cffice. The original
graphics were computer generatecd ard provided on mylar sheets with each data
set represented by a different cclor. Data within the shaded areas was
provided in digital form with a2 0.1 minute resolution.

37

SHOREL INE DATA DERIVED
WORLD DATA BASE

POINT SPALING

FRO™
CwiEY L]

V2770 W 126°S5 W 126°SO W 126°45 W 126°40 W 126°35 W 126°30 w 12B'25 W 126'20°w 126"1S W 126°'0 W 126%5 12FY -

; i | | 1 ‘.
aTIN T |AESARRAS RRANRARA AR SRRS RE RN RARS RS RN RO RDRSRARNRA RFOR T A e
: :

E 4
40°5S N —— —— a0'SS N
F =
-
t -
-]
t -
40's0 N —{- e
= =
=
40%4S N . S e0tat
-
3 B
— —_
b 3
- -
40°40 N ~E —— 4200 N
£ =
s o
40'3% N—’E —— «c'Iz N
: :
3
40°30 N -+ 4c'3a N
=
40°25 N —t— 4l'25 N
40'20 ¥ NPT PV
0% 15 M ——»-Ao‘\su
E -
3 -
— i
v -
aovon«E ; {1 o N
[— -
P
b =
P
- —
o 3
. -
@' N —E —— 40" N
[-
=
1 E
r. -
=5
-
e 3
L A e

oo v bl bbbl faldad L_‘L.A

270w

|
|
|

126°8% W 126°ST w 126°45 W 126°40 W 126'3% w 126°30 w 126°2% W 126°20 W 126" 1% w 126" 0w 126t W 1268°0 w

W5SB4 MERC PRJ. P3:8. SPECIAL DCATA BASE

DEPTHS N FATHOMS

38

€«@'ss

40° 45

4zt e

40°35

40°30

40°25

40° 24

asts

4010

40°S N

12625 W

127°0 w

126°55 W '26°5N0 W 126745 W 126°40 W 126°35'wW 126'30 W

wiSB84 MERD PR,. PS:B, SPECIAL DATA BASE

DEPTHS [N FATHOMS

39

— r ~—tT T + T T AR R
K Co i i !

J
T

126°25 w

1268°20°w

12615 w

12610 w

40" Al

40" 3¢

ac’ s

3" 20

4g' 0

40%° N

- SRt W 053w 26%4S W 12R'al W

v

IS

4~tec L

‘+Yrv71‘1111‘*TTYIverv{TrVTTTer{"rw‘TTTI‘vIV‘l’Y“T‘T“rvT‘ryr‘l“rTrrYjvrr{‘v]vvv\'v‘v‘v‘v‘v :‘7‘r*!}‘er‘rT1*Tr‘v‘Tryt"Q'wv‘(tr gy ‘E

AZTSO N

[N

on
N

x

42ty (3NN

LILIALL‘[J}JIILLJLJA*IIALJILll,{LllLLJllJ{JIllAJAll{LJllllllJ

40°30 N — 2030 N

40°25

.
P4

1 l Ll L_l)l,L}‘l J_LJ llllJ
S
r

»
o

40% s N

LIARTRIN

~
3]

ala *L.LL.I)_LLL L+ ot LlLLL{
=
z

s Ny

fadad

. . AR AN NN NN RAREA RN RSN, "
o A r ' NN NN AN bbb b b L b oo
7

©W 0 126'SS W 126°50 W 12645 w 126740 W 126°35 W 12630 W 126°25 W 126%20 W 126°1S W 126°10 W 12€'S W 126°0 w

WwGZg4 MERC PRU, PS8, SPECIAL DATA BASE
DEFTHS [N FATHOMS

40

40" 50

40° 45

40° 3¢

40°3¢C

40°2%

43°20G

40°°S

40°10

-
©
w
x

40°0 N

.
»
Y

JETSS W 2B°S0 W

5 4S W

Sns

e ~
W.JQ‘

i

RELNE
~ o
Y

POINT

co 40 w 12635 W 1 .6'30 w '26°25 w 126%20 w i26"1S w 128°15 W 126'S5 m

e

N
Fd

TrTpTrT

*V‘Tvrv1vlvi‘r[1Ivrr""v}'!,r[r‘r‘rr'*vr“lrv rrrv*‘

IR BAAS ARSI

x
!

rrrreb o et e ey -

x

L]

x

{

P ——

R
12770 ® 1o6°s5 w 126°50 W

WGiga

DEDYNS

MERT PR,

IN FATHOMS

126°4%°W 126°40 W 126'35'W 12R°I5 W

PS8,

SPECiAL DAVA BASE CRID

41

| } i vt
Il j AEAREAIRSRRRARAR T

128°25 w

LB

|
BARARARS'

126°20° w

+rr —r
T

126°15 W

126°10 w

™

126°5 w

oy }
{giLll+LlLlLlLll+LLLLLLLLL+LL;LLLLLL%LLLLLLAlL*JiAlLlLiL*LlLlJJJJA*JJALJJ;JA*JJLIiJLl4+LJ4JJJJJJ*AlJlJl;ll

a"

»
o
on
o
z

~
o
o
(=)
r

a
I5)
»
n
z

»
(o]
.
»
«
z

~
O
w
o
z

40'25

»
o
L3
«
xr

-

Le]
»

x

»
(o]
o
z

-~
5
wn
z

ala b LLLJ.}I .

@’ N

126°0 W

Y270 W 12655 W 156750 W

126% 45

'

SHOREL INE
WIRLD JATA
POINT §

Wol26%40 w 128738 W 126"30 W 12625 W 1i8'20 W 126°1S W ien'i(W

40°55 N

»
=Y
-
w
(2]
E4

™ V—f—Y‘TY‘r‘ITW"‘{ TTTTryry Y'{‘r‘rﬁ] r rv'rT*‘VTTr‘r’T“rT—r"’T‘r YT f"YTT TrrTrT j

40°45 N

-
(5}
-
vl
-
z

40°30 N

4025 %

40°20 N

4015 N

a
>

-
Q
z

b b e o

I
;

[REARRARA

i L 1 H |
BAARARRR AR REEREN DN DN A8 DR LA RA RS erﬁT T T T

T

Coho Ty

adada Ll

+
E

40°0 &

:

12705 W

126°55 W 126°50 w

wGS84 MER(L PRJ.

REPTMS 1IN FATHOMS

LLL._LJLI.JAJAJLLLJ.I.IAL;J.lAl.].I.LLI.l.I.I.J,!,JAJ.I.I.J_L‘LAL;Ll.l.hLl,J.I.LLLIJLIJLlLl.J.J‘lA'
T f T I I T i l I

126" 45

PS8,

Wo128%40 W 126°35 W 12630 W 12625 w 126°20 W 126°1S W 126°(0 W

SPECIAL DATA BASE

42

o
t <

6 S w \

E

e

o

agtes

405y

43

4l

4G°3¢

40° 25"

40'20

40%15

a0t

Q'S N

atc N

4ttt N

40°s¢

4045

4G 40

42°35

40°30

a0'2s

4020

40'15

40%10

'S~

400w

127°0 w

T2ETIS W 2650 w

T2ETAS W 1JETAC W 'lt'3S w 126°30 w

~

~
—
-
—
r
-
-
—
.
—_
-
—
v
—
—
v
—
8
—4—
v
—
—
—
8
——
-
—
-
—
S
-
r
%
—_
-
-
—
-
—
-
——
-
-
—
-
—
—_
—
-
—
h
N
b
-
—
.
—
-
-
b
-
—
.
—
8
—
b
.

z

x

L
L
E

12770 W' W 126°S0 W

WwssSB84

DEPTMS

MERC PRJ.

IN FATHOMS

126"45 W 126°40 W 126°35 W 126°30 W

PS8,

SPECTAL DATA BASE

43

12625 W

126°20 w
1

SHOREL INE

Ao~
WL L

OAT

PCINT

126% 0

SPAIING

12675 w

NS AT

vﬁ—r‘l T
ISEMRIRRRRE

12625 W

T Ty

126°20 W

126°13 w
1

T
i i

126°15 W

=

126°10 w

126°% W

'S

ag' 1S

40" 30

40°2S

40" 20

40°1S

4c"10

40 N

40'0 N

1260 W

~

4~

antc-

a2’ as

43" 3%

act1c

act- <

40° % N

M

N
2
<

2. ERRE AUES a tIE%aS W VZE'an w1 26%1S W U280 W 128725 W 126°20 w .
| b | (

N e T T ISARE IARRRART T — ‘. e e o e e e o -
i -
5 =
]

——
=

frrrprrrrrt e e b b b e e e ey

e bbb peper

.L+J_lL'.ALLlJ*_llA[JlllA*AlllLLl‘LL%LLJ.LJIJJJ+J1111L1411{AJAA]111IL{,JJAILIllI},

L")

126°50 W 126"4S

L

12640 w

L;A"LLLL‘ ‘jl,LLLlLlr‘hl‘l‘IAlﬁI".LlKI

-t
126

35 w

DATA

126°30 W

BASE

44

12

2%

L

126°20 w

l.lLJAlA%*LJLLL,l‘%LL LJ.',% Ll #;l.';l‘XL; Lol Pk

126"

Cw 8"l W et

PRLE TN

et
.A":(Y

40747
azhre
LS TN
LI
st
40008 A
49N
a0t N
ante N
-

SHORELINE DATA DER[VED FRO™M

WORLD DATA BASE (WDB) 1]

POINT SPACING = !

127°0 W 126°55°W 126°S0°W 126%4%°W 126%40°W 126°35 W 126°30 W (26°25 W 126°20 W 126°135 w 126"10°W 126°S W 1260 w

41'Q N 410N

400" 55 40°S5 N
40°s0 40'S0 N
40" 45 40%45 N
40% 40 40"40' N
40°35 40°35 N
40°30 40°30 N
40°28 «@0'2S N
40°20
40°1% 4015 N
4010

40"10 w

40'S N

.
12770 W 18'SS w 126°SO W 12645 W 126°40 W 126°35 W 126°30 W 126°25 w 12620 w 1268°1S w 12810 w 126'Sw 126°C w

WGS84 MERC PRJ. PS:8. SPECIAL DATA BASE

DEPTHS [N FATHOMS

45

SHORELINE DATA DERIVED FRC™
WORLD CATA BASE (Wl
POINT SPALING =
127°0 W 126°5S W !126°SO W 126%45 W 126°40°W (126°35'w 126°30 w 126°2% W 126°20 W '26'1S w 1Z6°'0 W 126°5 w 126°0 w
a0 N : s ! A } o 1 i ——— Y0 N
REAREAEERRERAN] MR AR RA A RN AR R R AR R R R R A A AR DR RE AR LU DR RA R RERE R AR RS AR AARRSA RE RARRRA D R v
53
3
3
40°S5 & —— 40'5S
-+

40°3C N

40%45 N

4040 N

Q'S N

1030

Q'2s N

0'20°n

a"s N

0'IC N

o
2}
x

x
bbb e b b b b e b e e b e by e

o'o M]
12770 W 6'ss W 126°50 W
WGS84 MERC PRU.
DEPTHS IN FATHOMS

126°45 W

PS:8.

126°40 W

12638 w

126°30 W

SPECIAL DATA BASE

128°25 W

126°20 w

126°15 W

126'10 v

126°S W

3 LLLL._}JJJ Lalalafaladalal

M 1.0

LLLLL;LL+LLLLLLLL¢+LLLLLLuLx+xLLLLLLL)+ALLLLLLLL+41L1¢1¢L¢+¢L4L4141

4D 45

4C'a0

40° 2%

40°25

40'20

40°'!'s

40%'0

'S N

10°0 N

126°0

SHORELINE DATA DER[ve, nl™
WORLC CATA EBaIz Al=2
POINT SPAZING = 1
Y270 W 12655 W 128°SO w 126°4% W 126°40 W 126°35 W 126°30 W 126°2%5 W 126°20 W 128"15 w i26°1C w 126°C w PIAN
. Il | | _ I 4 !
410N - T S RS S A R AR RS UERE R RS A AN RERS R RS RS RS ARSI LA AR A AR T
PR R —
v =
E B
b E
Bt
40°5% N-{- = agtsc
S X 3 d A X (oA
g E ﬁﬁ"&;{.’.&‘ e e s A1 G <
I ~
p!
E 3
1 .
40°SO N T 40°5¢C
-
- —
h ,_‘i
- J— i
A B G s e
A.w -.#,' Ry _‘:
-
40"45 N - 40t as
3
—
40" 40 ~~T_— —— 40°4C
E -
r =
B .
— —
4035 "‘F — 433
L -
—_ =
- =
2 E
40"30 N S sttt
T E
«
r 3
s -
V’.— -
F— —
B
40'25 N -+ —— 40' 25
E !
I 4
- 3
F 4
— =
40"20 ~—L — LYo
b =
— —
r -
— =
r o
C E
a’1s w—f —— 428
T T
E =
- 3
o
- 3
L - .
40"I0 N -4: ——
— =
E =
: =
'S N —t— —— 4T
— —
- =
- z
- =
L it
. D : | ! Ll DT
00N MMLMJWWW@%W | ".._“_4_1_“_._‘, actN
L
12770 @ agvsg y 128°50 W 126°45 W 126°40 W 126°35 W 126°30 W 126°25 W 106'20 w 126°15 W 12610 W iiE'S w 'l s
wGSB4 MERZ PRJ. PS8, SPECiIAL (DATA BASE
DEPTHS [N FATHOMS

47

40'55%

40°50

4C'as

40°3%

40'30

40720

40°'s

4810

40°S N

40°0 N

1270 w

E
i3

3

:

3

I

3

E L

WGS84 MERC PRJ.

DEPTHS

126°55 W

IN FATHOMS

126°50 W

126°45 w 126°40 W 126°35 W 126" w

PS8,

SPECIAL OATA BASE

48

ELA_LLLP‘LLLLLLH;LL tals +ALLL ._LL.J+L bad

126°15 w 126%10 W 126°S W 1268°0

SHORE_INE DA™ A DER{vED FRO™

WORLD CATA BASE WIE!

POINT SPACING =

W o 126%45 W 126°40 W 12635 w 12630 w 126%25 w 126°20 W 128"15 W 126''0 W 126°S W 26°C W
i {

FRRNOS

40'50

4045

40" 40

40°30

lL+LlJJLJLlL+JJJlJLJll}lJLIJJJLL+LILJLLJIJ*ILLLLLALL*]LLLI

-
(33
r
O

-

(o]
)

o

"0

A0'S N

>

x

~
~
>
T
N
o
on
o
)
[
o
on
©
x

(28RS w 126°4C W 126%35 W 126°30 W 12625 W 126°20 w 126°15 w
ERR —~ .] 1 | i ! . .

) HARNA IRARSAEASRA R RARA AR RO RO R DR SRS R AN o ! i

' Vo o

»
O
i
n
-z

o
2]
wn
F

LI TURY

actis N

40"30° N

40°30 N

40°25 N 4’25 N

40°20 N

40" 15 N

40 10N « o N

W’*‘V‘,T,YI'Y“T '+"' rTrT"(T rT‘{’T['T"V'ATY'T‘Y‘%(“‘TT‘TT"'TT{'TTT‘TTT’YT T {‘TTT‘T Y‘I FY‘V * TT‘Y ' A ’ VYV }Y r‘V rT 11 ‘ r %" I (T ‘ Y*' rr “Y ‘ 'Y T* !1 AR r" 1 1

@ioN

ELJ_LLLLLL+L‘LLI,LLJ_LI *,J..I_L_ILJ/LLlh*‘L.LLILJ_LiJ|>l.lJ.l_LALAlAL*,.LALLLJJ..ll‘L*_I_LJ_LA_LAiJle_LJ ISR *1‘11 Lol { ol Ll*lll IFRER N { vlalalele

.
Eﬂ‘rﬁ

1 3
.
12770 M 126%65 W 126°50 W 126%4S W 126%40 W 126°35 W 126°30 w 126°25 W 126°20 W 12618 W 12610 W 126°S w126 w

wGSg4 MERC PRy. PS:8. SPECTAL DATA BASE

OEPT™WS IN FATHOMS

49

Asst Secretary of the Navy
{Research, Engineering & Systems)
Navy Department

Washington DC 20350-1000

Chief of Naval Operations
Navy Department
Washington DC 20350-1000
Attn: OP-02

oP-T1

OP-0962X, R. Feden

OP-987

Oceanographer of the Navy
Chief of Naval Operations
U.S. Naval Observatory
34th & Mass Ave., NW
Washington DC 20390-1800
Attn: OP-96

Cemmander
vavar it Development Center
Warminster PA 18974-5000

Commanding Officer
Naval Coastal Systems Center
Panama City FL 32407-5000

Commander
Space & Naval Warfare Sys Com
Washington DC 20363-5100

Commanding OQfficer

Naval Environmental Prediction
Research Facility

Monterey CA 93943-5006

Commander

Naval Faciiities Eng Command
Naval Facilities Eng Command HQ
200 Stovall St.

Alexandria VA 22332-2300

Commanding Officer
Naval Ocean R&D Activity
Stennis Space Center MS 39529-5004
Attn: Code 100
Code 105
Code 115
Code 117, J. Hammack
Code 125EX
Code 1250 (13)
Code 125P (1)
Code 200
Code 300
Code 350, D. Hickman
Code 351, J. Byrnes
Code 351, J. Braud
Code 351, M. Lohrenz

Brooke Farquhar

NORDA Liaison Office
Crystal Plaza #5, Room 802
2211 Jefterson Davis Hwy.
Arlington VA 22202-5000

Commanding Ofticer
Naval Research Laboratory
Washington DC 20375

Distribution List

Commander
Naval Oceanography Command
Stennis Space Center MS 39529-5000

Commanding Officer
Fieet Numerical Oceanography Center
Monterey CA 93943-5005

Commanding Officer
Naval Oceanographic Office
Stennis Space Center MS 39522-5001
Attn: Code GGAP, B. Mullen
Code A, J. Depner
Code G, G. Caruthers
Code GB, O. Avery
Code GBA, D. Doyle

Commander
Naval Ocean Sysiems Center
San Diego CA 92152-5000

Commanding Offices

ONR Branch Qftice

Box 39

FPO New York NY 09510-0700

Commander
David W. Taylor Naval Research Center
Bethesda MD 20084-5000

Commander
Naval Surface Weapons Center
Dahlgren VA 22448-5000

Commanding Officer
Naval Underwater Systems Center
Newport Ri 02841-5047

Superintendent
Naval Postgraduate School
Monterey CA 93943

Director of Navy Laboratories
Rm 1062, Crysta! Plaza Bldg 5
Department of the Navy
Washington DC 20360

Ofticer in Charge

New London Laboratory

Naval Underwater Sys Cen Det
New London CT 06320

Director

National Ocean Data Center
WSC1 Room 103

6001 Executive Blvd.
Rockville MD 20852

Attn: G. W. Withee

Director

Woods Hole Oceanographic Inst
P.O. Box 32

Woods Hole MA 02543

University of California

Scripps Institute of Oceanography
P.O. Box 6049

San Diego CA 92106

Officer in Charge

Naval Surface Weapons Center Det
White Oak Laboratory

10901 New Hampshire Ave.

Silver Spring MD 20903-5000

Attn: Library

Commanding Officer

Fleet Anti-Sub Warfare Training Center,
Atiantic

Naval Station

Norfolk VA 23511-6485

Defense Mapping Agency Sys Cen
12100 Sunset Hill Rd. #200
Reston VA 22090-3207
Attn: SGWN
Code 10D/10P, Dr. E. Silva
Mel Wagner
Ed Danford

Office of Naval Technology

800 N. Quinmcy St

Arlington VA 22217-5000

Attn: Code 20, Dr. P. Selwyn
Code 228. Dr. M. Briscoe
Code 234, Dr. C. V. Votaw

Ottfice of Naval Research

80C N. Quincy St.

Arlington VA 22217-5000

Attn: Code 10
Code 10D/10P, Dr. E. Silva
Code 12
Code 112, Dr. E. Hartwig

Commander

Naval Sea Systems Command
Naval Sea Systems Command HQ
Washington DC 20362-5101

Commanding Officer
Naval Civil Engineering Laboratory
Port Hueneme CA 93043

Commander

Naval Air Systems Command
Naval Air Systems Command HQ
Washington DC 20361-0001

Pennsylvania State University
Applied Research Laboratory
P.O. Box 30

State College PA 16801

University of Texas at Austin
Applied Research Laboratories
P.O. Box 8029

Austin TX 78713-8029

Johns Hopkins University
Applied Physics Laboratory
Johns Hopkins Rd.

Laurel MD 20707

University of Washington
Applied Physics Laboratory
1013 Northeast 40th St.
Seattie WA 98105

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0183

Pub L recorhing burder ‘27 th s cohiecthe - ! ates TR IESIT s L LY ot " sea’thng es st ng
gatrer.rg antt mainta, g the qata newdas, a : sten ot infermaton ge er eshiTale 07 any L
this Coiect 0N 0 infarmat.or nTuding Sugges’ic : arten to Wa glon H2adQuanie s Sy Derations ana Repor's ©
Dav s Highway Suite 1208 A-ington VA JZ202-4300 anc 1o the 2''ze of Manageme i are Bucger Pare « i Rezucnor Proec (0704-0188 Wasringlos, C0C 2
1. Agency Use Only (Leave blankj 2. Report Date. 3. Report Type and Dates Covered.
November 1989 Final
4. Titie and Subtitle. 5. Funding Numbers.
Data Base Structure to Suppon the Production of the Pragrar Llemert N2 Q80101
Digital Bathymetnc Data Base
Freec: M G001
6. Author(s).
Tasx Mo 0102C
James E. Braud, [»hn L Breckenrdge. James E. Current, anc Jefry L. Landrum
Access o NG ON2R7116
7. Parforming Organization Name(s) and Address(es). 8. Performing Organization

Report Number.

Qceanr Science Directorate
Nava! Qcean Research and Development Activity NGROA Report 236
Steanis Space Center, Mississippr 39529-5004

9. Sponsoring/Monitoring Agency Name(s) and Address(es). 10. Spc;nsorlng/Moniloring Agency
Report Number.

Nava' Oceanographic Cffice
Stennis Space Center, Mississippi 39529

11. Suppiementary Notes.

12a. Distribution/Aavailability Statement. 12b. Distribution Code.

Approved for pubiic retease: distribution 1s uniimited. Navai Ocean Research and
Development Activity. Stennis Space Center, Mississippi 31523-5004.

13. Abetract (Maximum 200 words)

The Naval Ocean Research and Deveiopment Activity was tasked and sponsored by the Naval Oceanographic Office to develop a
computer moae’ that would support the storage and retrieval of the 7 billion points of cellected bathymetry that are used to suppon
the Ocean Survey Program These data points are stored at a resolution that is beyond the noise level induced by the collection sensors
Gridding these bathymetric data 1o an acceptable resolution of 0.1 minute for areas of actual coverage can greatly reduce storage
requiremants. Further reductions can be achieved through the use of the compression algorithms developed as a result of this project
An overall compression ratio nt 500 to 1 was demonstrated using actual data supplied by the Nava' Oceanographic Office.

Once the data base 1s reduced in size 10 a marageable leve!, relational data base managemen! systems become practical for organizing
information related (o the bathymetry in order to provide easy multikeyed access. The Structured-Query Language. a de ‘acto standard
for cata base retrieval. can be used to query the data base to obtain tables of path names for the tiles that contain the compressed
bathymetry A suggested tormat for these fiies and the re!ational data base structure 1s presented in this repont

14. Subject Terms. 15. Number of Pages.
52
ath ; 1t
bathymetry, data bases, prototypes 16. Price Code.
17. Security Classification 18. Sacurity Classification 19. Security Classification 20. Limitation of Abstract.
of Report. of This Page. of Abstract.
unclassitied Unclassihied Unclassified
NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)

Prescribad by ANS Std 239-1R
208-1C2

